SIMULTANEOUS DETERMINATION OF
THERMOPHYSICAL CHARACTERISTICS
OF MATERIALS

M. Marich UDC 536.21

Nonstationary methods for the simultaneous experimental determination of the diffusivity
and thermal conductivity of a semi-infinite body and a system of cylinders are analyzed.

Most nonstationary methods of determining the diffusivity and thermal conductivity use analytic solu-
tions of the heat-conduction equation for homogeneous bodies of simple geometrical shapes. The most
frequently employed initial condition is a uniform temperature distribution. The choice of boundary condi-
tions depends on the possibility of realizing them and the desire to obtain the simplest form of analytic
sojution. Therefore experiments are ordinarily performed with a semi-infinite rod for which analytic solu-
tions can be obtained for certain boundary conditions. The simplest case is the maintenance of a constant
temperature during the whole time of the experiment;

T(x=0, 130) =T, = const. 1

In this case the solution has the form

8(x, T}:M——*eﬂc —
T.—T, 2V ar
The diffusivity a can be determined by measuring the time r and the excess temperature at an arbi-
trary point of the rod x = R and monitoring the constancy of the excess temperature T,—T,. In this case,
however, it is impossible to determine the second important characteristic of the materlal the thermal
conductivity A,

Basically there are two ways to determine ¢ and A simultaneously for a body of this same geometric
form: 1) by introducing a boundary condition which describes heat transfer at the heated end of the rod; 2)
by satisfying the infinity condition by using a rod with known thermal characteristics as a standard.

In the first case one of the boundary conditions (2) or (3) is chosen:

L 70, 9

5% = ¢, = const. (2)
In this case

Tix, ©)—T,= ¢V at ierfc

l/ar_'
By measuring the excess temperatures in the plane x =R at times 7' and 7 we find ¢ from the relation

TR, T)—T, _ I/T feric R2Var"

T.—T, v derfe R/23 ar’
and by measuring the constant heat flux g, we can calculate A, For the boundary condition
K?T—g)—’j—)nLocETc—T(O, =0, @)
X
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the solution takes the form [1]

Tl ﬁ/o‘f‘\\‘w“
i £ . L L) —T . x
Lo T 005, 9 = _)‘TO T Sy
— exp ( Eeulges OLza'c)erfc ( L ;—OLVEF).
- A A2 23 at A
. Here also it is sufficient to measure two values of the temperature
T(-#/27) difference between the body and the medium T(R, 7)-T, at times 7'
T ejlo ° ] and 7" and to monitor the constancy of the temperature T,. Thus
/"’ , two equations are obtained with arguments 4 and A which can be
g /7° - solved graphically. The correct determination of the heat-transfer
o r07) | o coefficient « is of vital importance here. In obtaining the solution
! //,, it is assumed that « is constant but, strictiy speaking, this is not
i] / observed in nonstationary processes.
f el g Since boundary condition (1) is easier fo maintain accurately
0 ., % p than the others, experiments with a standard in principle give a
) better result and simultaneously ensure a determination of both
Fig. 1. Temperature T of sam- coefficients. This method was used in [4] with a very simple ex-
ple as a function of the time 7 in perimental arrangement. The solution of the differential equation
minutes {4]. for the test body, a finite rod with thermal insulation and moisture-
proofing, has the form
8{x T):M ~er1c— _——Eh"{erfc 2nR — — erfe QLR———ET, 0.Lx R, 1>0. (4)
' T, —T, Vot 2Vart |

From a measurement of 6,(R/2, 7), or better still 8;(R/3, 1), it is possible to find gy by neglecting all
terms of the sum even if |h| is not very much smaller than 1. This is sufficient to ensure that 6,(R/3, T)
~ (.55 since

0.55 = erfc—R'g e —
1 a7 2V at o 2Var

= er{c0.422 — 1 [eric 2.110 — erfc 2,954] = 0.55064 — 0.00282.
In neglecting the sum we make an error of less than 0.5%. After determining # it is necessary fo {ake
account of the first term in the sum and to determine A, since
1—*4 X a {—h
A=ty ko= "7 ="
IR R W il wy )
The first term of the sum can be included in the calculation by 1ncreasing the time of the experiment so

long as it does not become very long, or by measuring another temperature, for example at x =R, It may
be better to combine these two methods. Thus we obtain

—1 [ erfe SR3 erfe Rj3

B, (R, 7'y = — herfc R_~ - herfc 3;1? -
St 2V oyt

The last term on the right hand side can frequently be neglected. For example when 7' = 2,257 and R
/3 - 2¥ayT ~ 0.4 the error is

6, 9 =~ 0.15h/ (1 — A).

Thus the solution with the boundary condition g, = const at x = 0 can be used even without measuring the
heat flux {3].

The methods described for determining A and a are characterized by the simplicity of the experi-
mental arrangement and the measurement procedure. Only the temperature and time need to be measured
very accurately, Therefore it is recommended that these methods be used whenever possible, i.e., for
good and average heat conductors,

For very good insulators there is no simple way to ensure sufficient thermal insulation of the lateral
surface of a semi-infinite rod. This is particularly difficult in investigating moist bodies when the thermal
insulation must also serve as moisture-proofingand its thickness is limited by the load limit of the scales
ordinarily used in the experiment,
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Fig. 2. The functions f;{e) and £, Fig, 3. The functions At (@) and A" @);
(@); a is in m*/sec. a is in m?/sec,

The arrangement described in [4] can be used to determine the thermophysical coefficients of insu-
lators, but then it is impossible to avoid an inconvenient boundary condition including the heat-transfer
coefficient . For compact solid materials the sample must be a rather long cylinder of very small
diameter and without lateral insulation. Then it is accurate enough to reduce the two-dimensional prob-
lem to one dimension:

o D L [OT L L0 (M) K
pw YD) roor or
0 iloo, 0Kr<ry T30,
T (5, r, 0) =T, = const, o
T (0, r, %) =T, =const, o
T (o0, 7, 1) = Ty; T (00, 1, T)jdx =0, o
_kﬁ%'?u =a[T(x 1y, 1) —Tl. o

For a small radius r; we have T(x, r, 7) = T(x, r,, 7) and the radially symmetric temperature dis-
tribution is sufficiently accurately given by

T, ro =T 0, 1)[1—B(/r).
Then Eq. (6) becomes
(6"

oc T (x, ry, T) _a [aiT(x, Iy, T, 2 0T(x, ry, 7) }

ot ox? B ~r0~ or

Taking account of boundary condition (10) and omitting r, as an argument of T we reduce (6') to the form

oT (x, ) —u FTix, 1 20

2 g (T DTl (6"
0

Thus for very thin cylinders the two~dimensional Eq. (8) reduces to (6") with the boundary conditions
(7), (8), and (9). Its solution is

G(x,r)zwzi[exp(—xl/hjerfc( -
T,—T, 2 Y 2V ar

ot ( "2 x 1/ D0at
— ! c S Y oerfc — - Babaset il B I
Ary e (L 7"’0) ( 2V ar l/ Ary )} a1
By measuring two temperatures (R /2, 7) and 6(R, T) solution (11) becomes a system of two equations with

the arguments A and . The graphical method for solving them is described in the following somewhat more
complicated problem.

System of Thin Uninsulated Cylinders- (Finite and Semi-Infinite), The values ofA and ¢ for moist ma-
terials depend strongly on the moisture content. It is known that a temperature gradient produces a trans-
port of moisture and therefore a uniform moisture distribution cannot be maintained. The moisture
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distribution will be approximately uniform in a short eylinder of moist material with the necessary surface
moisture-proofing. Semiboundedness must be achieved with a dry standard. In this case the following sys-
tem must be solved (sample 1, standard 2)

oMy v) _, PTav 9 %

T.(x, 7) (—R < x<0), 12)
Jt ox? P1C97, 1050 ) (
ol ) _ o Ol 28 1 (0<x< o), (13)
dt . ox? chzro
Ty (x, 0) =T, (x, 0) =T, (o0, 7) =0, (14)
T,(—R, 1) =T, = const, (15)
T:(0, T) =T,{0, 1), (16)
0T, (0, 7) _ M 0T, (0, 'r) a7
ox A 0x

The solution can be obtained very simply by using the'followi.ng form of the Laplace transform:

Lif@)}= ( exp [— {s — 2a/pcrgy Tl f{ty dT
0

For example (12) has the form

(= (e ) =t o ) - gy (0 ),

0167, 0187y P1C37g ! 01615, \\ D161

If temperatures are measured from T, instead of from 0 the solutions have the form

6, (x, 1) — 2 [legx, T)T— To) _ Ehn { exp [—(2nR LR+ %)
c 4o :

n=0

X l/ﬁ 2a ] erfc (2'”; ;fl_:x ‘// 2“‘11“ ~ exp [(%R% R4 x)

%0 2nR+ R+ x %a,10 .
<V | e (M Tl/m AEIREEES

/

—) l/f 2o J erfe (QILR R—x ‘//2a1m) + exp [(QﬂR—rR

P 2Vt M,
2nR + R — X Qe |
— f 1 .,
%) l/ hiry ] e ( 2 Val Ay ):;J a8
0, (x, 1) = 21T, (x 1) — T,] —(1—Hh L pn e\p[ ( inR/:— R
1
. " Zaa, 2nR+R X 1/20“11"7
"V, ) V ] erle ( 2Var  2Vag Mre |
MR+-R | % 2aa 2nR+R | X . 1/20&(1 1:) \ :
ex i 1 rf L — LA 1
d |.( Va, Voa, ) l/ hyr :I e ( 2V 2V ez Mty /) (19)

By measuring two temperatures 6,(—~R /2, 7) and 6,(0, T) = 0,(0, T) and the time 7 we obtain from (18)
two equations with arguments A, and ;. We illustrate the graphical determination of A; and q, (henceforth
written A and a) by an example.

In the experiment described in [4] the best quality No. 2 cutf tobacco was investigated. In experiment
No. 3 tobaceo with a 17.3% moisture content and a density of 350 kg /m® was used, The standard was paraf-
fin with X, = 0.267 W/m-deg, ¢, = 3.22 - 10% J/kg -deg, andp, = 910kg /m?. The insulation was plastic with A
~0.21. The measured temperatures are shown in Fig. 1 as a function of the time,

Using the one-dimensional solution (4) and the experimental values it was calculated that A = 0.0352
W/m-deg and ¢ = 6.97-1078 m?/sec. This result shows that plastic cannot serve as a thermal insulator;
in fact there is almost no thermal insulation for bodies with A = 0,035, However, the value of A obtained is
a consequence of the crude calcuiational error, and the accurate calculation using Eq. (4) for x =R gives
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Bl 8, (0.025; 1500) . 0123 0464,
erfc 0.025/21/6.97 - 1078.1500 0.084

R el O /“x = 06175.
1-+h l a,

Even this result, of course, cannot be correct since:

€1 = Ay/0ya; = 0.6175.108/350.6.97 = 25.3:10° I/kg -deg,

Thus instead of (4) we should use (18) with x =—R /2 and x = 0 for 7 = 1500 sec, set up two equations
with arguments g(aq,) 2ndA(=2;) . and find the point of intersection of the corresponding curves, It is as-
sumed that R = 0.025 m and r; = 0.0125 m; instead of ¢ the heat transfer coefficient k must be calculated
since the rod is insulated by plastic with d = 0.06 m:

B =1 (-1— < d ln—d—~ 4,36 W/m®.deg.
a 2h; d,

For a horizontal cylinder in a free air jet

a =82 - 0.00733(AT)"® kcal/m®-deg-h  (Schack),
o =81+0.045AT keal/m*-deg-h (Cammeter).
Using these data we obtain the following functions from (18):

fia, A) =0,(0; 1500: a, &); f.(a, ») = 0,(-—0.0125; 1500; a, A).

We calculate a sufficient number of points by computer for the curves f;(a) and fy(q) with the param-
eter A and draw them in the fa plane (Fig. 2). From the intersection of the curves for f;(¢) and 6,(0, 1500)
= const we obtain several points for a new curve A = A"(@). In the same way we obtain the curve A = A"(q).
These curves are drawn in the Ag plane (Fig. 3), and their intersection gives the values of the required
quantities @ and A.

It is clear from Fig. 1 that the galvanometer readings were not sufficiently stable during the experi-
ment, and therefore it is proper to take the values of the temperatures from the curve, Thus

T,(0; 1500) = 26.08°C; T, = (— 0.0125; 1500) = 37.50°C.

The temperatures T,(-R, 7) =T, = const requires particular attention. If can be seen from [4] that it is
difficuit to maintain the temperature accurately constant, Starting from the assumption that at the begin-
ning ofthe experimentthe instability was still larger the behavior of T, (~R, T) can be traced in the 0-25 min
range (open curve of Fig, 1), Then the average value Ty = 58.7°C, and conseguently

2(26.08 — 21.6)

= 0.2415; 8, (— 0.0125; 1500) = 0.8572.
58.7— 21.6 :

6, (0; 1500) =

Thus from Fig. 3 we find A = 0.196 W /m-deg, ¢ = 26.4°10"% m¥sec, and consequently ¢ = 2120 J/kg-
deg. This value of ¢ is realistic,

CONCLUSIONS

The values of A and ¢ can be determined simultaneously by using a rather simple experimental ar-
rangement [4] for all sides of materials, Equation (4) must be used for good heat conductors, Eq. (11) for
compact insulators, while moist insulators require the use of moisture-proofingandEq. (18).

If experiments are performed in freely circulating air there will not be a large error in estimating
o or k; the error in estimating o (k) does not have a very large effect on A but does have a very large effect
on a:

k 2,91 3,49 4,17 4,36 4,65
3 0,2245 0,2045 0,1954 0,1960 0,2047
a-10% 11,45 13,31 18,62 26,40 30,00
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The temperatures must be measured very accurately, particularly at the junctions of the cylinders
which are rather far from the heated surface. The temperature T (-R, 7) =T, must give an immediate
pulse for controlling the thermostat, Its constancy can be ensured by the condensation of water vapor,
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